20 research outputs found

    The smarty4covid dataset and knowledge base: a framework enabling interpretable analysis of audio signals

    Full text link
    Harnessing the power of Artificial Intelligence (AI) and m-health towards detecting new bio-markers indicative of the onset and progress of respiratory abnormalities/conditions has greatly attracted the scientific and research interest especially during COVID-19 pandemic. The smarty4covid dataset contains audio signals of cough (4,676), regular breathing (4,665), deep breathing (4,695) and voice (4,291) as recorded by means of mobile devices following a crowd-sourcing approach. Other self reported information is also included (e.g. COVID-19 virus tests), thus providing a comprehensive dataset for the development of COVID-19 risk detection models. The smarty4covid dataset is released in the form of a web-ontology language (OWL) knowledge base enabling data consolidation from other relevant datasets, complex queries and reasoning. It has been utilized towards the development of models able to: (i) extract clinically informative respiratory indicators from regular breathing records, and (ii) identify cough, breath and voice segments in crowd-sourced audio recordings. A new framework utilizing the smarty4covid OWL knowledge base towards generating counterfactual explanations in opaque AI-based COVID-19 risk detection models is proposed and validated.Comment: Submitted for publication in Nature Scientific Dat

    What do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project

    Full text link
    [EN] Background To understand user needs, system requirements and organizational conditions towards successful design and adoption of Clinical Decision Support Systems for Type 2 Diabetes (T2D) care built on top of computerized risk models. Methods The holistic and evidence-based CEHRES Roadmap, used to create eHealth solutions through participatory development approach, persuasive design techniques and business modelling, was adopted in the MOSAIC project to define the sequence of multidisciplinary methods organized in three phases, user needs, implementation and evaluation. The research was qualitative, the total number of participants was ninety, about five-seventeen involved in each round of experiment. Results Prediction models for the onset of T2D are built on clinical studies, while for T2D care are derived from healthcare registries. Accordingly, two set of DSSs were defined: the first, T2D Screening, introduces a novel routine; in the second case, T2D Care, DSSs can support managers at population level, and daily practitioners at individual level. In the user needs phase, T2D Screening and solution T2D Care at population level share similar priorities, as both deal with risk-stratification. End-users of T2D Screening and solution T2D Care at individual level prioritize easiness of use and satisfaction, while managers prefer the tools to be available every time and everywhere. In the implementation phase, three Use Cases were defined for T2D Screening, adapting the tool to different settings and granularity of information. Two Use Cases were defined around solutions T2D Care at population and T2D Care at individual, to be used in primary or secondary care. Suitable filtering options were equipped with "attractive" visual analytics to focus the attention of end-users on specific parameters and events. In the evaluation phase, good levels of user experience versus bad level of usability suggest that end-users of T2D Screening perceived the potential, but they are worried about complexity. Usability and user experience were above acceptable thresholds for T2D Care at population and T2D Care at individual. Conclusions By using a holistic approach, we have been able to understand user needs, behaviours and interactions and give new insights in the definition of effective Decision Support Systems to deal with the complexity of T2D care.The research leading to these results has received funding from the European Commission under the European Union's Seventh Framework Programme (FP7/2007-2013) grant agreement no 600914.Fico, G.; Hernandez, L.; Cancela, J.; Dagliati, A.; Sacchi, L.; Martinez-Millana, A.; Posada, J.... (2019). What do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project. BMC Medical Informatics and Decision Making. 19(1):1-16. https://doi.org/10.1186/s12911-019-0887-8116191World Health Statistics 2018, Monitoring health for the SDGs, World Health Organization. Available at: https://www.who.int/gho/publications/world_health_statistics/en/ , last Accessed 09 Aug 2019.Kane R, Priester R, Totten A. Meeting the challenge of chronic illness. Baltimore: The Johns Hopkins University Press; 2005.Colagiuri, S., Kent, J., Kainu, T., Sutherland, S., Vuik, S. Rising to the challenge: preventing and managing type 2 diabetes, report of the WISH diabetes forum. 2015. Available from: http://www.wish.org.qa/wp-content/uploads/.../WISH_Diabetes_Forum_08.01.15_WEB-1.pdf . Accessed 09 Aug 2019.IDFD Atlas. 2017. Available from: http://www.diabetesatlas.org/resources/2017-atlas.html . Accessed 11 Feb 2018.American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care. 2004;27(9):2262–5.Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012;345:e5900.Zarkogianni K, Litsa E, Mitsis K, Wu P, Kaddi CD, Cheng C, Wang MD, Nikita KS. A review of emerging technologies for the management of diabetes mellitus. IEEE Trans Biomed Eng. 2015;62(12):2735–49.Garg AX, Adhikari NK, McDonald H, Rosas-Arellano M, Devereaux PJ, Beyene J, Sam J, Haynes RB. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.Roshanov PS, et al. Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review. Implement Sc. 2011;6(1):92.Roshanov PS, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ. 2013;346:f657.Miller A, Moon B, Anders S, Walden R, Brown S, Montella D. Integrating computerized clinical decision support systems into clinical work: a meta-synthesis of qualitative research. Int J Med Inform. 2015;84(12):1009–18.Patel VL, Kannampallil TG. Cognitive informatics in biomedicine and healthcare. J Biomed Inform. 2015;53:3–14.Zhang J. Human-centered computing in health information systems part 1: analysis and design. J Biomed Inform. 2005;38(1):1–3.Rinkus S, Walji M, Johnson-Throop KA, Malin M, Turley JP, Smith JW, Zhang J. Human-centered design of a distributed knowledge management system. J Biomed Inform. 2005;38:4–17.Nemeth CP, Nunnally M, O’Connor M, Klock PA, Cook R. Getting to the point: developing IT for the sharp end of healthcare. J Biomed Inform. 2005;38:18–25.Xiao Y. Artifacts and collaborative work in healthcare: methodological, theoretical and technological implications of the tangible. J Biomed Inform. 2005;38:26–33.Malhotra S, Laxmisan A, Keselman A, Zhang J, Patel VL. Designing the design phase of critical care devices: a cognitive approach. J Biomed Inform. 2005;38:34–50.Samaras GM, Horst RL. A systems engineering perspective on the human-centered design of health information systems. J Biomed Inform. 2005;38:61–74.Johnson CM, Johnson TR, Zhang J. A user-centered framework for redesigning health care interfaces. J Biomed Inform. 2005;38:75–87.Patterson ES, Boebbeling BN, Fung CH, Militello L, Anders S, Asch SM. Identifying barriers to the effective use of clinical reminders: bootstrapping multiple methods. J Biomed Inform. 2005;38:189–99.Laxmisan A, Malhotra S, Keselman A, Johnson TR, Patel VL. Decisions about critical events in device-related scenarios as a function of expertise. J Biomed Inform. 2005;38:200–12.Ginsburg GE. Human factors engineering: a tool for medical device evaluation in hospital procurement decision-making. J Biomed Inform. 2005;38:213–9.Reddy M, McDonald DW, Pratt W, Shabot MM. Technology, work, and information flows: lessons from the implementation of a wireless alert pager system. J Biomed Inform. 2005;38:229–38.Despont-Gros C, Mueller H, Lovis C. Evaluating user interactions with clinical information systems: a model based on human–computer interaction models. J Biomed Inform. 2005;38:244–55.World Health Organization, 2009. Practical guidance for scaling up health service innovations.European Commission, 2015. European scaling up strategy on active and healthy ageing.van Gemert-Pijnen JE, Nijland N, van Limburg M, Ossebaard HC, Kelders SM, Eysenbach G, Seydel ER. A holistic framework to improve the uptake and impact of eHealth technologies. J Med Internet Res. 2011;13(4):e111.Sacchi L, Dagliati A, Segagni D, Leporati P, Chiovato L, Bellazzi R. Improving risk-stratification of diabetes complications using temporal data mining. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). United States: IEEE; 2015. p. 2131–4.Sambo F, Di Camillo B, Franzin A, Facchinetti A, Hakaste L, Kravic J, Fico G, et al. A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). United States: IEEE; 2015. p. 2119–22.Van Velsen L, van Gemert-Pijnen L, Nijland N, Beaujean D, Van Steenbergen J. Personas: the linking pin in holistic design for eHealth. proc. eTELEMED; 2012.Van Velsen L, Wentzel J, Van Gemert-Pijnen JE. Designing eHealth that matters via a multidisciplinary requirements development approach. JMIR Res Protoc. 2013;2(1):e21.Maurya A. Running lean: iterate from plan A to a plan that works. United States: O’Reilly Media, Inc.; 2012.Wentzel J, Van Limburg M, Karreman J, Hendrix R, Van Gemert-Pijnen L. Co-creation with stakeholders: a Web 2.0 Antibiotic Stewardship Program. Proceedings of The Fourth International Conference on eHealth, Telemedicine, and Social Medicine: January 30, 2012 to February 4, 2012; Valencia. 2012:196–202.Morgan DL. Focus groups as qualitative research. Thousand Oaks: Sage; 1997.Saaty T. How to structure and make choices in complex problems. Hum Syst Manag. 1982;3:255–61.Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 1977;15:234–81.Pecchia L, Bath PA, Pendleton N, Bracale M: Web-based system for assessing risk factors for falls in community-dwelling elderly people using the analytic hierarchy process. International Journal of the Analytic Hierarchy Process. 2010;2(2):135–57.Fico G, Gaeta E, Arredondo MT, Pecchia L. Analytic hierarchy process to define the most important factors and related technologies for empowering elderly people in taking an active role in their health. J Med Syst. 2015;39(9):1–7.Goepel KD. Implementation of an online software tool for the Analytic Hierarchy Process (AHP-OS). Int J Anal Hierarchy Process. 2018;10(3):469–87. https://doi.org/10.13033/ijahp.v10i3.590 .Nielsen J. Ten usability heuristics. United States: Nielsen Norman Group; 2005.Brooke J. SUS-A quick and dirty usability scale. Usability Eval Ind. 1996;189(194):4–7.Hassenzahl M, Burmester M, Koller F. AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Mensch & computer. Germany: Vieweg+ Teubner Verlag; 2003, 2003. p. 187–96.International Organization for Standardization. Ergonomics of human-system interaction: part 210: human-centred design for interactive systems. United States: ISO; 2010.Sauro J, Lewis JR. Quantifying the user experience: practical statistics for user research. Burlington: Morgan Kaufmann; 2012.Gülcü C. The complete log4j manual. QOS. ch; 2003.Nantz B. Open source. NET development: programming with NAnt, NUnit, NDoc, and More. United States: Addison-Wesley Professional; 2004.Borsci S, Federici S, Lauriola M. On the dimensionality of the system usability scale: a test of alternative measurement models. Cogn Process. 2009;10(3):193–7.Borsci S, Federici S, Bacci S, Gnaldi M, Bartolucci F. Assessing user satisfaction in the era of user experience: comparison of the SUS, UMUX, and UMUX-LITE as a function of product experience. Int J Hum Comput Interact. 2015;31(8):484–95.Nielsen J, Landauer TK. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems. 1993. pp. 206–13. ACM.Dagliati A, Sacchi L, Tibollo V, Cogni G, Teliti M, Martinez-Millana A, et al. A dashboard-based system for supporting diabetes care. J Am Med Inform Assoc. 2018;25(5):538–47.Fico G, et al. User requirements for incorporating diabetes modeling techniques in disease management tools. In: 6th European conference of the international federation for medical and biological engineering. Switzerland: Springer International Publishing; 2015.Cancela J, Hernandez L, Fico G, Waldmeyer MTA. Heuristic evaluation of a toolset for type 2 diabetes mellitus management. In: XIV Mediterranean conference on medical and biological engineering and computing. Switzerland: Springer International Publishing; 2016, 2016. p. 982–7.Borsci S, Uchegbu I, Buckle P, Ni Z, Walne S, Hanna GB. Designing medical technology for resilience: integrating health economics and human factors approaches. Expert Rev Med Devices. 2018;15(1):15–26

    Intelligent personalized medical decision support systems for the management of diabetes mellitus

    No full text
    The scope of the present thesis is the design, development and evaluation of intelligent medical decision support systems, aiming at optimizing the treatment of patients with Diabetes Mellitus (DM). Specifically, within the framework of the present thesis, several methods have been developed for the analysis and processing of data related to medical electronic health records, laboratory measurements and continuous glucose and insulin records, towards the design and the development of: i) an intelligent Insulin Infusion Advisory System (IIAS), able to provide real time estimations of the appropriate insulin infusion rates for type 1 DM patients using continuous glucose monitors and insulin pumps (Artificial Pancreas), in order to maintain glucose levels within the physiological range, and ii) models for the risk assessment of long-term complications of Type I and Type II DM, focusing on diabetic retinopathy. In the first part of this study, a simulation model of the glucose - insulin metabolism system of Type I DM has been developed, based on the combined use of compartmental models (CMs) and Neural Networks (NNs). The model is incorporated into a Model Predictive Controller (MPC) in order for the latter to estimate insulin infusion rates. In order to evaluate the performance of the IIAS, several in silico trials have been performed. Moreover, a clinical trial has been conducted under controlled conditions, the results of which provided valuable input for SSEI improvement. In particular, a tuning algorithm based on fuzzy logic has been developed, for the on line adaptation of the NMPC parameters. The enhanced SSEI has been tested against its ability to handle meal disturbances, fasting conditions, delays, noise to the glucose measurements, interpatient variability, and erroneous meal size estimations. The second part of the present thesis, concerns the development of models able to estimate the risk of people with Type I or Type II DM to develop over time, long-term diabetes complications, with particular focus to diabetic retinopathy. Towards this direction, advanced classification techniques are applied based on the wavelet neural networks. For the development and the evaluation of the aforementioned medical decision support systems, data from Type I and Type II DM patients, have been used, acquired from the Department of Pediatrics, Diabetes Center, P&A Kyriakoy Children’s Hospital, Athens and the Athens Hippokration Hospital.Στην παρούσα διατριβή σχεδιάζονται, αναπτύσσονται και αξιολογούνται ευφυή συστήματα υποστήριξης εξατομικευμένων ιατρικών αποφάσεων που στοχεύουν στη βελτιστοποίηση της θεραπείας των ατόμων με Σακχαρώδη Διαβήτη (ΣΔ). Συγκεκριμένα, οι μέθοδοι που αναπτύσσονται χρησιμοποιούνται για την ανάλυση και την επεξεργασία δεδομένων Ηλεκτρονικού Ιατρικού Φακέλου, Εργαστηριακών Μετρήσεων καθώς και συνεχών καταγραφών γλυκόζης και ινσουλίνης, με σκοπό i) τη σχεδίαση και ανάπτυξη Συμβουλευτικού Συστήματος Έγχυσης Ινσουλίνης (ΣΣΕΙ), το οποίο εκτιμά σε πραγματικό χρόνο τον απαιτούμενο ρυθμό έγχυσης ινσουλίνης σε άτομα με ΣΔ Τύπου Ι, που χρησιμοποιούν Διάταξη Συνεχούς Μέτρησης Γλυκόζης (ΔΣΜΓ) και αντλία έγχυσης ινσουλίνης («Τεχνητό Πάγκρεας»), ώστε τα επίπεδα γλυκόζης αίματος, να διατηρούνται εντός φυσιολογικών ορίων και ii) την ανάπτυξη μοντέλων αποτίμησης της πιθανότητας εμφάνισης μακροπρόθεσμων επιπλοκών του ΣΔ Τύπου Ι και Τύπου ΙΙ, εστιάζοντας στη διαβητική αμφιβληστροειδοπάθεια. Στο πρώτο μέρος της διατριβής εφαρμόζονται προηγμένες μέθοδοι μοντελοποίησης, που βασίζονται στη συνδυασμένη χρήση Διαμερισματικών Μοντέλων (ΔΜ) και Νευρωνικών Δικτύων (ΝΔ) για την προσομοίωση του μεταβολικού συστήματος γλυκόζης-ινσουλίνης σε άτομα με ΣΔ Τύπου Ι. Το τελικό μοντέλο ενσωματώνεται σε έναν ελεγκτή που βασίζεται σε μοντέλο πρόβλεψης (Model Predictive Control-MPC), για τον μετέπειτα υπολογισμό των συνιστώμενων ρυθμών έγχυσης ινσουλίνης. Για τον λεπτομερή έλεγχο ορθής λειτουργίας του ΣΣΕΙ, πραγματοποιήθηκε σειρά υπολογιστικών πειραμάτων. Επιπλέον, διεξήχθη κλινική δοκιμή σε νοσοκομείο υπό ελεγχόμενες συνθήκες, τα αποτελέσματα της οποίας ανέδειξαν αδυναμίες του ΣΣΕΙ και οδήγησαν στη βελτίωσή του. Συγκεκριμένα, αναπτύχθηκε προσαρμοστικός αλγόριθμος αυτόματης και σε πραγματικό χρόνο, ενημέρωσης των παραμέτρων του ελεγκτή χρησιμοποιώντας τεχνικές ασαφούς λογικής. Το βελτιωμένο ΣΣΕΙ εξετάστηκε ως προς την ικανότητά του να διαχειρίζεται διαταραχές γευμάτων, καταστάσεις νηστείας, καθυστερήσεις, ανακρίβειες στις μετρήσεις γλυκόζης, διαφορές στο μεταβολισμό γλυκόζης που υφίστανται μεταξύ ατόμων με ΣΔ Τύπου Ι (inter-patient variability), καθώς και λανθασμένες εκτιμήσεις της περιεχόμενης ποσότητας των υδατανθράκων στα λαμβανόμενα γεύματα. Το δεύτερο μέρος της εργασίας αφορά στην ανάπτυξη μοντέλων εκτίμησης της πιθανότητας ατόμων με ΣΔ Τύπου Ι και Τύπου ΙΙ να εμφανίσουν σε βάθος χρόνου μακροπρόθεσμες επιπλοκές του ΣΔ, εστιάζοντας στη διαβητική αμφιβληστροειδοπάθεια. Για το σκοπό αυτό, εφαρμόστηκαν τεχνικές ταξινόμησης των δεδομένων, με χρήση τεχνητών νευρωνικών δικτύων με κυματιδιακές συναρτήσεις ενεργοποίησης. Για την ανάπτυξη και την αξιολόγηση των συστημάτων χρησιμοποιήθηκαν ιατρικά δεδομένα ατόμων με ΣΔ Τύπου Ι και Τύπου ΙΙ, που παραχωρήθηκαν από την Α’ Παιδιατρική Κλινική, Διαβητολογικό Κέντρο του Νοσοκομείου Π & Α Κυριακού, καθώς και από το Διαβητολογικό Κέντρο του Ιπποκράτειου Νοσοκομείου Αθηνών

    Intelligent Personalized Medical Decision Support Systems for the Management of Diabetes Mellitus

    No full text
    182 σ.Στην παρούσα διατριβή σχεδιάζονται, αναπτύσσονται και αξιολογούνται ευφυή συστήματα υποστήριξης εξατομικευμένων ιατρικών αποφάσεων που στοχεύουν στη βελτιστοποίηση της θεραπείας των ατόμων με Σακχαρώδη Διαβήτη (ΣΔ). Συγκεκριμένα, οι μέθοδοι που αναπτύσσονται χρησιμοποιούνται για την ανάλυση και την επεξεργασία δεδομένων Ηλεκτρονικού Ιατρικού Φακέλου, Εργαστηριακών Μετρήσεων καθώς και συνεχών καταγραφών γλυκόζης και ινσουλίνης, με σκοπό i) τη σχεδίαση και ανάπτυξη Συμβουλευτικού Συστήματος Έγχυσης Ινσουλίνης (ΣΣΕΙ), το οποίο εκτιμά σε πραγματικό χρόνο τον απαιτούμενο ρυθμό έγχυσης ινσουλίνης σε άτομα με ΣΔ Τύπου Ι, που χρησιμοποιούν Διάταξη Συνεχούς Μέτρησης Γλυκόζης (ΔΣΜΓ) και αντλία έγχυσης ινσουλίνης («Τεχνητό Πάγκρεας»), ώστε τα επίπεδα γλυκόζης αίματος, να διατηρούνται εντός φυσιολογικών ορίων και ii) την ανάπτυξη μοντέλων αποτίμησης της πιθανότητας εμφάνισης μακροπρόθεσμων επιπλοκών του ΣΔ Τύπου Ι και Τύπου ΙΙ, εστιάζοντας στη διαβητική αμφιβληστροειδοπάθεια. Στο πρώτο μέρος της διατριβής εφαρμόζονται προηγμένες μέθοδοι μοντελοποίησης, που βασίζονται στη συνδυασμένη χρήση Διαμερισματικών Μοντέλων (ΔΜ) και Νευρωνικών Δικτύων (ΝΔ) για την προσομοίωση του μεταβολικού συστήματος γλυκόζης-ινσουλίνης σε άτομα με ΣΔ Τύπου Ι. Το τελικό μοντέλο ενσωματώνεται σε έναν ελεγκτή που βασίζεται σε μοντέλο πρόβλεψης (Model Predictive Control-MPC), για τον μετέπειτα υπολογισμό των συνιστώμενων ρυθμών έγχυσης ινσουλίνης. Για τον λεπτομερή έλεγχο ορθής λειτουργίας του ΣΣΕΙ, πραγματοποιήθηκε σειρά υπολογιστικών πειραμάτων. Επιπλέον, διεξήχθη κλινική δοκιμή σε νοσοκομείο υπό ελεγχόμενες συνθήκες, τα αποτελέσματα της οποίας ανέδειξαν αδυναμίες του ΣΣΕΙ και οδήγησαν στη βελτίωσή του. Συγκεκριμένα, αναπτύχθηκε προσαρμοστικός αλγόριθμος αυτόματης και σε πραγματικό χρόνο, ενημέρωσης των παραμέτρων του ελεγκτή χρησιμοποιώντας τεχνικές ασαφούς λογικής. Το βελτιωμένο ΣΣΕΙ εξετάστηκε ως προς την ικανότητά του να διαχειρίζεται διαταραχές γευμάτων, καταστάσεις νηστείας, καθυστερήσεις, ανακρίβειες στις μετρήσεις γλυκόζης, διαφορές στο μεταβολισμό γλυκόζης που υφίστανται μεταξύ ατόμων με ΣΔ Τύπου Ι (inter-patient variability), καθώς και λανθασμένες εκτιμήσεις της περιεχόμενης ποσότητας των υδατανθράκων στα λαμβανόμενα γεύματα. Το δεύτερο μέρος της εργασίας αφορά στην ανάπτυξη μοντέλων εκτίμησης της πιθανότητας ατόμων με ΣΔ Τύπου Ι και Τύπου ΙΙ να εμφανίσουν σε βάθος χρόνου μακροπρόθεσμες επιπλοκές του ΣΔ, εστιάζοντας στη διαβητική αμφιβληστροειδοπάθεια. Για το σκοπό αυτό, εφαρμόστηκαν τεχνικές ταξινόμησης των δεδομένων, με χρήση τεχνητών νευρωνικών δικτύων με κυματιδιακές συναρτήσεις ενεργοποίησης. Για την ανάπτυξη και την αξιολόγηση των συστημάτων χρησιμοποιήθηκαν ιατρικά δεδομένα ατόμων με ΣΔ Τύπου Ι και Τύπου ΙΙ, που παραχωρήθηκαν από την Α’ Παιδιατρική Κλινική, Διαβητολογικό Κέντρο του Νοσοκομείου Π & Α Κυριακού, καθώς και από το Διαβητολογικό Κέντρο του Ιπποκράτειου Νοσοκομείου Αθηνών.The scope of the present thesis is the design, development and evaluation of intelligent medical decision support systems, aiming at optimizing the treatment of patients with Diabetes Mellitus (DM). Specifically, within the framework of the present thesis, several methods have been developed for the analysis and processing of data related to medical electronic health records, laboratory measurements and continuous glucose and insulin records, towards the design and the development of: i) an intelligent Insulin Infusion Advisory System (IIAS), able to provide real time estimations of the appropriate insulin infusion rates for type 1 DM patients using continuous glucose monitors and insulin pumps (Artificial Pancreas), in order to maintain glucose levels within the physiological range, and ii) models for the risk assessment of long-term complications of Type I and Type II DM, focusing on diabetic retinopathy. In the first part of this study, a simulation model of the glucose - insulin metabolism system of Type I DM has been developed, based on the combined use of compartmental models (CMs) and Neural Networks (NNs). The model is incorporated into a Model Predictive Controller (MPC) in order for the latter to estimate insulin infusion rates. In order to evaluate the performance of the IIAS, several in silico trials have been performed. Moreover, a clinical trial has been conducted under controlled conditions, the results of which provided valuable input for SSEI improvement. In particular, a tuning algorithm based on fuzzy logic has been developed, for the on line adaptation of the NMPC parameters. The enhanced SSEI has been tested against its ability to handle meal disturbances, fasting conditions, delays, noise to the glucose measurements, interpatient variability, and erroneous meal size estimations. The second part of the present thesis, concerns the development of models able to estimate the risk of people with Type I or Type II DM to develop over time, long-term diabetes complications, with particular focus to diabetic retinopathy. Towards this direction, advanced classification techniques are applied based on the wavelet neural networks. For the development and the evaluation of the aforementioned medical decision support systems, data from Type I and Type II DM patients, have been used, acquired from the Department of Pediatrics, Diabetes Center, P&A Kyriakoy Children’s Hospital, Athens and the Athens Hippokration Hospital.Κωνσταντία Χ. Ζαρκογιάνν

    An explainable XGBoost-based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus

    No full text
    Cardiovascular Disease ( CVD) is an important cause of disability and death among individuals with Diabetes Mellitus (DM). International clinical guidelines for the management of Type 2 DM (T2DM) are founded on primary and secondary prevention and favor the evaluation of CVD-related risk factors towards appropriate treatment initiation. CVD risk prediction models can provide valuable tools for optimizing the frequency of medical visits and performing timely preventive and therapeutic interventions against CVD events. The integration of explainability modalities in these models can enhance human understanding on the reasoning process, maximize transparency and embellish trust towards the models’ adoption in clinical practice. The aim of the present study is to develop and evaluate an explainable personalized risk prediction model for the fatal or non-fatal CVD incidence in T2DM individuals. An explainable approach based on the eXtreme Gradient Boosting (XGBoost) and the Tree SHAP (SHapley Additive exPlanations) method is deployed for the calculation of the 5-year CVD risk and the generation of individual explanations on the model’s decisions. Data from the 5- year follow up of 560 patients with T2DM are used for development and evaluation purposes. The obtained results (AUC=71.13%) indicate the potential of the proposed approach to handle the unbalanced nature of the used dataset, while providing clinically meaningful insights about the model’s decision process

    An insulin infusion advisory system based on autotuning nonlinear model-predictive control

    No full text
    This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations

    A Multimodal Approach for Real Time Recognition of Engagement towards Adaptive Serious Games for Health

    No full text
    In this article, an unobtrusive and affordable sensor-based multimodal approach for real time recognition of engagement in serious games (SGs) for health is presented. This approach aims to achieve individualization in SGs that promote self-health management. The feasibility of the proposed approach was investigated by designing and implementing an experimental process focusing on real time recognition of engagement. Twenty-six participants were recruited and engaged in sessions with a SG that promotes food and nutrition literacy. Data were collected during play from a heart rate sensor, a smart chair, and in-game metrics. Perceived engagement, as an approximation to the ground truth, was annotated continuously by participants. An additional group of six participants were recruited for smart chair calibration purposes. The analysis was conducted in two directions, firstly investigating associations between identified sitting postures and perceived engagement, and secondly evaluating the predictive capacity of features extracted from the multitude of sources towards the ground truth. The results demonstrate significant associations and predictive capacity from all investigated sources, with a multimodal feature combination displaying superiority over unimodal features. These results advocate for the feasibility of real time recognition of engagement in adaptive serious games for health by using the presented approach

    An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods

    No full text
    In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays
    corecore